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Abstract The energy of a graph is defined as the sum of the absolute values of
the eigenvalues of the graph. In this paper, we first present a new method to directly
compare the energies of two bipartite graphs, then also present some new techniques
to compare the quasi-orders of some bipartite graphs. As the applications of these
methods, we prove that a conjecture proposed by Wang and Kang (J Math Chem
47(3):937–958, 2010) is true. At the same time, our results also provide the simplified
proofs of the main results of Wang and Kang (J Math Chem 47(3):937–958, 2010)
and Li and Li (Electron J Linear Algebra 17:414–425, 2008).
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1 Introduction

Let G be a graph with n vertices and A be its adjacency matrix. Let λ1, . . . , λn be
the eigenvalues of A, then the energy of G, denoted by E(G), is defined [2,3] as
E(G) = ∑n

i=1 |λi |.
Definition 1.1 A tree T is called a caterpillar if the graph obtained by deleting all
the pendant vertices of T is a path. A caterpillar of order n obtained from a path
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Fig. 1 The trees Tn [n − 7, 5], Tn [n − 7, 0, 4] and Tn [n − 5, 1, 1]

v1v2, . . . , vd−1 by adding ni (ni ≥ 0) pendent edges to vi (i = 1, . . . , d − 1) is
denoted by Tn[n1, n2, . . . , nd−1], where

∑d−1
i=1 ni + d − 1 = n.

When n1 ≥ 1 and nd−1 ≥ 1, then the diameter of Tn[n1, n2, . . . , nd−1] is d.
Graphs with extremal energies are extensively studied in literature. Gutman [1]

determined the first four smallest energy trees of order n. Li and Li [5] determined the
5 and 6th smallest energy trees of order n. Wang and Kang [8] determined the 7–9th
smallest energy trees of order n. Using our notations given above, these results can be
summarized as the following:

Theorem 1.1 [1,5,8] If n ≥ 46, then the following nine trees are the first nine smallest
energy trees of order n : Tn[n − 1], Tn[n − 3, 1], Tn[n − 4, 2], Tn[n − 4, 0, 1], Tn[n −
5, 3], Tn[n − 5, 0, 2], Tn[n − 6, 4], Tn[n − 6, 0, 3], Tn[1, n − 5, 1] (Fig. 1).

In [8], Wang and Kang further proposed the following conjecture:

Conjecture 1.1 (Wang–Kang) If n ≥ 7117599, then the 10–12th smallest energy
trees of order n are Tn[n − 7, 5], Tn[n − 7, 0, 4] and Tn[n − 5, 1, 1].

In view of Theorem 1.1, this conjecture is equivalent to the comparisons of the
energies of the following pairs of trees:

E(Tn[n − 7, 5]) < E(Tn[n − 7, 0, 4]) < E(Tn[n − 5, 1, 1]) < E(T ),

for all n-vertex trees T /∈ T12 where T12 is the set of 12 trees of order n consisting of
the 9 trees in Theorem 1.1 and the 3 trees in Conjecture 1.1.

In Sect. 2 of this paper, we present a new method of directly comparing the energies
of two k-claw attaching bipartite graphs Gu(k) and Hv(k). As the application of this
method, we prove that the Conjecture 1.1 proposed by Wang and Kang is true under
the weaker requirement n ≥ 59. We also give an example to show that Conjecture 1.1
does not hold when n = 58.

Also, the results we obtained in the proof of Conjecture 1.1 actually include the
main results of [8] and [5] (without using the result of Theorem 1.1). In this sense, we
also provide a simplified proof of the main results of [8] which originally need a very
long proof.

The characteristic polynomial det(x I − A) of the adjacency matrix A of a graph G is
also called the characteristic polynomial of G, written as φ(G, x) = ∑n

i=0 ai (G)xn−i .
In this paper, we write bi (G)=|ai (G)|, and also write φ̃(G, x) = ∑n

i=0 bi (G)xn−i .
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If G is a bipartite graph, then it is well known that φ(G, x) has the form

φ(G, x) =
� n

2 �∑

i=0

a2i (G)xn−2i =
� n

2 �∑

i=0

(−1)i b2i (G)xn−2i (1)

and thus

φ̃(G, x) =
� n

2 �∑

i=0

b2i (G)xn−2i . (b2i (G) = |a2i (G)| = (−1)i a2i (G)) (2)

In case G is a forest, then b2i (G) = m(G, i), the number of i-matchings of G.
When G is a bipartite graph of order n. Then by (1) and (2) we have

φ(G, i x) = inφ̃(G, x) (G is bipartite, i = √−1) (3)

The starting point of our discussions is the following integral formula (4) for the
energy differences of two bipartite graphs G1 and G2 of order n given in [7]:

E(G1) − E(G2) = 2

π

+∞∫

0

ln
φ̃(G1, x)

φ̃(G2, x)
dx (4)

The method of the quasi-order relation “�” is an important tool in the study of
graph energy, which was first defined by Gutman and Polansky in [4], and can be
equivalently defined as in the following definitions 1.1 and 1.2.

Definition 1.2 Let f (x) = ∑n
i=0 ai xn−i and g(x) = ∑n

i=0 bi xn−i be two monic
polynomials of degree n with nonnegative coefficients.

(1) If ai ≤ bi for all 0 ≤ i ≤ n, then we write f (x) � g(x).
(2) If f (x) � g(x) and f (x) 	= g(x), then we write f (x) ≺ g(x).

Definition 1.3 Let G1 and G2 be two bipartite graphs of order n. Then we write
G1 � G2 if φ̃(G1, x) � φ̃(G2, x), write G1 ≺ G2 if φ̃(G1, x) ≺ φ̃(G2, x) and write
G1 ∼ G2 if φ̃(G1, x) = φ̃(G2, x).

According to the integral formula (4), we have for two bipartite graphs G1 and G2
of order n that,

G1 � G2 �⇒ E(G1) ≤ E(G2) and G1 ≺ G2 �⇒ E(G1) < E(G2).

2 A new method of directly comparing the energies of two k-claw attaching
bipartite graphs

In the study of many problems of graph energies, the method of quasi-order is an
efficient method. But unfortunately, in some cases the two graphs under consideration
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are quasi-order incomparable (for example, the 8 and 9th smallest energy trees, and
the 11 and 12th smallest energy trees in Wang–Kang’s Conjecture 1.1). In such cases,
we need some new methods to directly compare the energies of two bipartite graphs.
In this section, we will give one such method which will be one of the main techniques
in the proof of our main result. At the end of this section, we will also give a new
technique (in Theorem 2.3) for the comparison of the quasi-orders concerning the
different coalescences of bipartite graphs.

Let u be a vertex of a graph G. A k-claw attaching graph of G at u, denoted by
Gu(k), is the graph obtained from G by attaching k new pendant edges to G at the
vertex u.

The coalescence of two graphs G and H with respect to vertex u in G and vertex v

in H , denoted by Gu · Hv (sometimes abbreviated as G · H ), is the graph obtained by
identifying the vertices u and v. In particular, if H is the star K1,k and v is its central
vertex, then G · H = Gu(k), the k-claw attaching graphs G at u.

For the sake of simplicity, the polynomials φ(G, x) and φ̃(G, x) will be denoted
by φ(G) and φ̃(G).

Theorem 2.1 [6]

φ(G · H) = φ(G)φ(H − v) + φ(G − u) (φ(H) − xφ(H − v)) (5)

If G and H are both bipartite graphs, then from formulae (3) and (5) we have:

φ̃(G · H) = φ̃(G)φ̃(H − v) + φ̃(G − u)
(
φ̃(H) − x φ̃(H − v)

)
(6)

In case when G · H = Gu(k), we have φ̃(H − v) = xk and φ̃(H) − x φ̃(H − v) =
kxk−1. Thus (6) will become the following:

φ̃(Gu(k)) = xk−1 (
x φ̃(G) + kφ̃(G − u)

)
. (7)

Let u, v be vertices of bipartite graphs G and H with the same order, respectively.
Gu(k) and Hv(k) are k-claw attaching graph of G, H . In the following, we write:

D(Gu, Hv) = φ̃(H)φ̃(G − u) − φ̃(G)φ̃(H − v)

D1 = {x > 0|D(Gu, Hv) > 0}, D2 = {x > 0|D(Gu, Hv) < 0}

and

D3 = {x > 0|D(Gu, Hv) = 0}

Then obviously we have: D1 ∪ D2 ∪ D3 = (0,+∞).
We also write

dk(x) = φ̃(Hv(k))

φ̃(Gu(k))
= x φ̃(H) + kφ̃(H − v)

x φ̃(G) + kφ̃(G − u)
and d(x) = φ̃(H − v)

φ̃(G − u)
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then it is easy to see that for x > 0, we have

x ∈ D1 ⇔ φ̃(H − v, x)

φ̃(G − u, x)
<

φ̃(H, x)

φ̃(G, x)
,

x ∈ D2 ⇔ φ̃(H − v, x)

φ̃(G − u, x)
>

φ̃(H, x)

φ̃(G, x)
,

x ∈ D3 ⇔ φ̃(H − v, x)

φ̃(G − u, x)
= φ̃(H, x)

φ̃(G, x)
.

Now let

E D(k) = E(Hv(k)) − E(Gu(k)) and E D = E(H − v) − E(G − u).

According to the integral formula (4) and (7), we have

E D = 2

π

+∞∫

0

ln
φ̃(H − v)

φ̃(G − u)
dx = 2

π

+∞∫

0

ln d(x)dx

and

E D(k) = 2

π

+∞∫

0

ln
x φ̃(H) + kφ̃(H − v)

x φ̃(G) + kφ̃(G − u)
dx = 2

π

+∞∫

0

ln dk(x)dx (8)

Under the above notations, we have the following properties for the function dk(x):

Lemma 2.1 Let x > 0 be fixed. Then for all 0 ≤ l < k we have:

(1) If x ∈ D1, then d(x) < dk(x) < dl(x);
(2) If x ∈ D2, then d(x) > dk(x) > dl(x);
(3) If x ∈ D3, then d(x) = dk(x) = dl(x).

Proof By the definitions we have:

dk(x) − d(x) = x D(Gu, Hv)

φ̃(Gu(k))φ̃(G − u)
(9)

dk(x) − dl(x) = x(l − k)D(Gu, Hv)

φ̃(Gu(k))φ̃(Gu(l))
(10)

So the results (1)–(3) follows easily from (9) and (10). ��
From Lemma 2.1 we can obtain the following theorem, which give the upper and

lower bound (independent of k) for the energy difference DE(k) = E(Hv(k)) −
E(Gu(k)).
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Theorem 2.2 Let D1, D2, D3, dk(x) and d(x) be defined as above. Then for 0 ≤ l <

k, we have

(1)
∫

D1
ln d(x)dx + ∫

D2
ln dl(x)dx + ∫

D3
ln dl(x)dx ≤ ∫ +∞

0 ln dk(x)dx
≤ ∫

D1
ln dl(x)dx + ∫

D2
ln d(x)dx + ∫

D3
ln d(x)dx.

Where (each) equality holds if and only if both D1 and D2 are empty.
(2) If D1 = ∅ but D2 	= ∅, then E D(l) < E D(k) < E D
(3) If D2 = ∅ but D1 	= ∅, then E D < E D(k) < E D(l)
(4) If D1 = D2 = ∅, then E D(l) = E D(k) = E D

Proof (1) We have

+∞∫

0

ln dk(x)dx =
∫

D1

ln dk(x)dx +
∫

D2

ln dk(x)dx +
∫

D3

ln dk(x)dx

and by Lemma 2.1 we have:

∫

D1

ln d(x)dx <

∫

D1

ln dk(x)dx <

∫

D1

ln dl(x)dx (if D1 	= ∅, 0 ≤ l < k)

∫

D2

ln dl(x)dx <

∫

D2

ln dk(x)dx <

∫

D2

ln d(x)dx (if D2 	= ∅, 0 ≤ l < k)

∫

D3

ln dl(x)dx =
∫

D3

ln dk(x)dx =
∫

D3

ln d(x)dx

From these relations (1) follows.
(2) When D1 = ∅, the left hand side of the inequality in (1) equals

∫

D1

ln d(x)dx +
∫

D2

ln dl(x)dx +
∫

D3

ln dl(x)dx =
+∞∫

0

ln dl(x)dx = π

2
E D(l)

and the right hand side of the inequality in (1) equals

∫

D1

ln dl(x)dx +
∫

D2

ln d(x)dx +
∫

D3

ln d(x)dx =
+∞∫

0

ln d(x)dx = π

2
E D

So by (8) and result (1) of this theorem (together with D2 	= ∅) we have

E D(l) < E D(k) < E D

The proof of (3) is similar to (2), and (4) follows directly from (3) of Lemma 2.1. ��
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The following is a new technique for the comparison of the quasi-orders concerning
the different coalescences of bipartite graphs.

Theorem 2.3 Let u be a non-isolated vertex of a bipartite graph G, vi be a vertex of
a bipartite graph Hi (i = 1, 2). Let G · Hi be the coalescence graph of G and Hi at
u and vi (i = 1, 2). Then we have

(1) If H1 � H2 and H1 − v1 � H2 − v2, then G · H1 � G · H2. Furthermore, if one
of the two conditions is strict, then we have G · H1 � G · H2.

(2) For any rooted tree H of order k+1 with G ·H 	= Gu(k),we have G ·H � Gu(k).

Proof (1) By formula (7), we have

φ̃(G · H1) − φ̃(G · H2) = (φ̃(G) − x φ̃(G − u))(φ̃(H1 − v1) − φ̃(H2 − v2))

+ φ̃(G − u)(φ̃(H1) − φ̃(H2)).

So the results follow from the hypothesis and the facts φ̃(G − u) � 0 and φ̃(G) −
x φ̃(G − u) � 0.
(2) Take H1 = H , v1 be the root of H and H2 = K1,k , v2 be the center of K1,k in
(1). Then obviously we have H1 � K1,k = H2. Also G · H 	= Gu(k) implies that
H1 − v1 � k P1 = H2 − v2. So we have G · H � Gu(k) by result (1). ��

3 The inner order of the trees Tn(i)(1 ≤ i ≤ 13) in Table 1

In this section, we first define the trees Tn(i) for n ≥ 14 and i = 1, 2, . . . , 13 in the
following Table 1. Then we will prove that E(Tn(i)) < E(Tn(i +1)) for i = 1, . . . , 12.
Here Tn(13) is only an auxiliary graph which will be used in Sect. 4 to help us to prove
that E(Tn(12)) < E(T ) for all n-vertex tree T /∈ {Tn(i) | i = 1, . . . , 12}.

The following lemma can be obtained by directly computing the numbers of 2, 3
and 4-matchings of the corresponding caterpillars.

Lemma 3.1 (1) φ̃(Tn[a, b]) = xn + (n − 1)xn−2 + ab xn−4

(2) φ̃(Tn[a, b, c]) = xn + (n − 1)xn−2 + (a + c + ab + bc + ac)xn−4 + abcxn−6

(3) φ̃(Tn[a, b, c, d]) = xn + (n − 1)xn−2 + (1 + 2a + b + c + 2d + ab + ac + ad
+bc + bd + cd)xn−4 + (ab + ad + cd + abc + bcd + acd + abd)xn−6

+abcdxn−8

Table 1 The trees Tn(i) with 1 ≤ i ≤ 13 (n ≥ 14)

i Tn(i) i Tn(i) i Tn(i)

1 Tn [n − 1] 2 Tn [n − 3, 1] 3 Tn [n − 4, 2]
4 Tn [n − 4, 0, 1] 5 Tn [n − 5, 3] 6 Tn [n − 5, 0, 2]
7 Tn [n − 6, 4] 8 Tn [n − 6, 0, 3] 9 Tn [1, n − 5, 1]
10 Tn [n − 7, 5] 11 Tn [n − 7, 0, 4] 12 Tn [n − 5, 1, 1]
13 Tn [n − 8, 6]
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Table 2 The polynomials φ̃(Tn(i)) for i = 1, . . . , 13

i Tn(i) φ̃(Tn(i))

1 Tn [n − 1] xn + (n − 1)xn−2

2 Tn [n − 3, 1] xn + (n − 1)xn−2 + (n − 3)xn−4

3 Tn [n − 4, 2] xn + (n − 1)xn−2 + (2n − 8)xn−4

4 Tn [n − 4, 0, 1] xn + (n − 1)xn−2 + (2n − 7)xn−4

5 Tn [n − 5, 3] xn + (n − 1)xn−2 + (3n − 15)xn−4

6 Tn [n − 5, 0, 2] xn + (n − 1)xn−2 + (3n − 13)xn−4

7 Tn [n − 6, 4] xn + (n − 1)xn−2 + (4n − 24)xn−4

8 Tn [n − 6, 0, 3] xn + (n − 1)xn−2 + (4n − 21)xn−4

9 Tn [1, n − 5, 1] xn + (n − 1)xn−2 + (2n − 7)xn−4 + (n − 5)xn−6

10 Tn [n − 7, 5] xn + (n − 1)xn−2 + (5n − 35)xn−4

11 Tn [n − 7, 0, 4] xn + (n − 1)xn−2 + (5n − 31)xn−4

12 Tn [n − 5, 1, 1] xn + (n − 1)xn−2 + (3n − 13)xn−4 + (n − 5)xn−6

13 Tn [n − 8, 6] xn + (n − 1)xn−2 + (6n − 48)xn−4

Table 3 ni , D1(i), D2(i), li , E D(li ) and E D for i ∈ {8, 9, 11, 12}
i ni D1(i) D2(i) li E D(li ) E D

8 6 (0, +∞) ∅ 0 1.08+ 0

9 7 ∅ (0, +∞) 39 0.00565+ 0.47+

11 7 (0, +∞) ∅ 0 1.3+ 0

12 8 ∅ (0, +∞) 51 0.0017+ 0.4268+

Now we can list all the polynomials φ̃(Tn(i)) for i = 1, . . . , 13 in the following
Table 2.

Theorem 3.1 If n ≥ 59, then E(Tn(i)) < E(Tn(i + 1)) for 1 ≤ i ≤ 12.

Proof—Case 1: i ∈ {8, 9, 11, 12}. For this fixed i , take G = Gi = Tni (i) for some
ni (see Table 3). Let H = Hi = Tni (i + 1) and write k = n − ni .

Let u be the vertex with maximal degree in G, and v be the vertex with maximal
degree in H . Then for n ≥ 59, we can write Tn(i) = Gu(n − ni ) = Gu(k) and
Tn(i + 1) = Hv(n − ni ) = Hv(k).

Now for such choices of G, H and u, v, we can compute D(Gu, Hv) and the cor-
responding regions D1 = D1(i) and D2 = D2(i). We find that exactly one of the two
regions D1(i) and D2(i) is empty (see Table 3). Thus we see that our G, H and u, v

chosen in this way satisfy the hypothesis of (2) or (3) of Theorem 2.2, and so we can
conclude by Theorem 2.2 that E D(k) is between E D and E D(l) for all 0 ≤ l < k.

Next, for this fixed i , we take l = li as in Table 3. Then n ≥ 59 implies that k =
n −ni ≥ li = l ≥ 0. Thus by Theorem 2.2 we have either E D(l) < E D(k) < E D or
E D < E D(k) < E D(l) when k > li , and obviously E D(k) = E D(li ) when k = li .

Finally, we use computer to calculate E D and E D(li ) (they are all independent of
k and n, and thus are fixed when i is fixed). We find that E D ≥ 0 and E D(li ) > 0
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for all i ∈ {8, 9, 11, 12}. So from Theorem 2.2 we obtain E D(k) > 0, namely
E(Hv(k)) > E(Gu(k)), or equivalently E(Tn(i)) < E(Tn(i + 1)) for all n ≥ 59,
and each fixed i ∈ {8, 9, 11, 12}.
Case 2: i ∈ {1, 2, 3, 4, 5, 6, 7, 10}. By Table 2 we have φ̃(Tn(i)) ≺ φ̃(Tn(i + 1)).
Thus by the integral formula (4) we have E(Tn(i)) < E(Tn(i + 1)). ��
Remark 3.1 (1) Among those numbers E D(li ) and E D in the last two columns of

Table 3, the notation a+ means a number greater than a.
(2) The two zeros in the last column of Table 3 are accurate values which can be

checked by direct computations as follows:
i = 8: E(H − v) = E(G − u) = 4; i = 11: E(H − v) = E(G − u) = 2

√
5.

4 The proof of Conjecture 1

In this section, we will prove that the Wang–Kang’s Conjecture 1 is true for n ≥ 59.
By the results of Sect. 3, we are only left to show that E(Tn(12)) < E(T ) for all
n-vertex tree T /∈ {Tn(i) | i = 1, . . . , 12}.

A basic elementary inequality which we will use several times in the comparison
of the quasi-order relation is the following:

xy ≥ c(x + y − c), if x ≥ c and y ≥ c (11)

Lemma 4.1 Let n ≥ 15 and T = Tn[a, b, c] be a caterpillar tree of order n with the
diameter d(T ) = 4, and T 	= Tn(i) for i = 4, 6, 8, 9, 11, 12 in Table 1 Then either
T � Tn(12) or T � Tn(13).

Proof—Case 1: b = 0. Since T 	= Tn(i) for i = 4, 6, 8, 11, we have min{a, c} ≥ 5.
Thus by Lemma 3.1 and the inequality (4.1) we have m(Tn[a, 0, c], 2) = ac+a +c ≥
5(a + c − 5) + a + c = 6n − 43. Then T = Tn[a, 0, c] � Tn(13) by Table 2.
Case 2: b ≥ 1. Since T 	= Tn(9), Tn(12), we have a ≥ 2, c ≥ 2 when b = 1, and
a + c ≥ 3 when b ≥ 2. Thus

m(Tn[a, b, c], 3) = abc ≥ 2(a + b + c − 3) = 2(n − 6) = 2n − 12.

For m(T, 2), we still use Lemma 3.1 and the inequality (4.1) to consider the fol-
lowing two cases:

(1) If b = 1, then m(T, 2) = 2(a + c)+ ac ≥ 2(a + c)+ 2(a + c − 2) = 4n − 20 >

3n − 13.
(2) If b ≥ 2, then m(T, 2) = (b + 1)(a + c) + ac ≥ 3(a + b + c − 2) + ac ≥

3(n − 5) + 2 = 3n − 13

So by Table 2 we always have T = Tn[a, b, c] � Tn(12) in this case. ��
Lemma 4.2 Let n ≥ 15 and T be a non-caterpillar tree of order n with the diameter
d(T ) = 4. Then T � Tn(12).
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Fig. 2 The non-caterpillar tree Mn(n1, . . . , nr ; d)

Proof Since T be a non-caterpillar tree of order n with the diameter d(T ) = 4, the
tree obtained from T by deleting all pendant vertices of T is not a path and has diam-
eter 2. So it must be a star K1,r with r ≥ 3. It follows that T is a tree of the form
Mn(n1, . . . , nr ; d) as shown in Fig. 2, where n1 ≥ n2 ≥ · · · ≥ nr ≥ 1 and d ≥ 0.
Case 1: n1 ≥ 2. By using (2) of Theorem 2.3, we have T � Tn[n1, a, n2], where
a ≥ n3 + 1 ≥ 2.
By the proof of Case 2 of Lemma 4.1, we also have Tn[n1, a, n2] � Tn(12). So we
get T � Tn(12).
Case 2: n1 = n2 = · · · = nr = 1.

If r = 3, then T = Mn(1, 1, 1; n − 7). By direct calculation, it is easy to see that
m(T, 2)=3n−11, m(T, 3)=3n−17. Then by Table 2 we have T = Mn(1, 1, 1; n−7)

� Tn(12).
If r ≥ 4., then by using (2) of Theorem 2.3 again we have T � Mn(1, 1, 1; n−7) �

Tn(12). ��
Lemma 4.3 Let n ≥ 14 and T be a caterpillar tree of order n with the diameter
d(T ) = 5. Then T � Tn(12).

Proof By hypothesis, T is a tree of the form Tn[a, b, c, d] (where a ≥ 1, d ≥ 1 and
a + b + c + d = n − 4).
Case 1: Both b and c are not zero. Then a, b, c, d are all not zero.
By Lemma 3.1 and using the inequalities (11), we have:

m(T, 2) = 1 + (a + b + c + d) + (a + d)(b + c + 1) + ad + bc
≥ 1+ (a +b+c+d)+2(a +b+c+d −1)+ (a +d −1)+ (b+c−1) = 4n −19,

and also
m(T, 3) > ab + cd + ad ≥ (a + b − 1) + (c + d − 1) + ad ≥ n − 5.

So by Table 2 we have T = Tn[a, b, c, d] � Tn(12).
Case 2: One of b and c is zero, say b = 0. By Lemma 3.1 and using the inequality
(11), we have:

m(T, 2) ≥ 1 + 2(a + c + d) + (a + c)d ≥ 1 + 2(a + c + d) + a + c + d − 1 =
3(n − 4) = 3n − 12,

and m(T, 3) ≥ (a + c)d ≥ a + c + d − 1 = n − 5. So by Table 2 we have
T = Tn[a, b, c, d] � Tn(12). ��
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Theorem 4.1 Let n ≥ 15. T /∈ {Tn(1), . . . , Tn(12)}. Then either T � Tn(12) or
T � Tn(13).

Proof—Case 1: d(T ) = 3. Then T = Tn[a, b] with a ≥ 6 and b ≥ 6 by hypothesis.
By Lemma 3.1 and the inequality (4.1) we have m(T, 2) = ab ≥ 6(a + b − 6) =
6n − 48. So T � Tn(13).
Case 2: d(T ) = 4.

If T is a caterpillar tree, then by Lemma 4.1 we have either T � Tn(12) or T �
Tn(13).

If T is a non-caterpillar tree, then by Lemma 4.2 we have T � Tn(12).
Case 3: d(T ) ≥ 5. By using (2) of Theorem 2.3 several times, we can obtain some
tree T ′ = Tn[a, b, c, d] with a ≥ 1, d ≥ 1 such that T � T ′. By Lemma 4.3, we have
T ′ � Tn(12). So in this case we have T � Tn(12). ��
Theorem 4.2 Let n ≥ 59. Then the tree Tn(i) is the i th smallest energy tree of order
n for i = 1, 2, . . . , 12. Consequently, the Wang–Kang’s Conjecture 1.1 is true.

Proof By Theorem 3.1, we already know that E(Tn(i)) < E(Tn(i+1)) for 1 ≤ i ≤ 12.
Now suppose that T /∈ {Tn(1), . . . , Tn(12)}. By Theorem 4.1 we have either T �

Tn(12) or T � Tn(13).
In the first case, we have E(T ) > E(Tn(12)). In the second case, we have E(T ) ≥

E(Tn(13)) > E(Tn(12)) by Theorem 3.1. Thus we always have E(T ) > E(Tn(12))

when T /∈ {Tn(1), . . . , Tn(12)}. This proves that the tree Tn(i) is the i th smallest
energy tree of order n for i = 1, 2, . . . , 12. Consequently, Conjecture 1 is true. ��
Remark 4.1 By using a computer we can obtain that E(T58(12)) − E(T58(13))

.=
0.0024212 > 0. This example shows that Conjecture 1 does not hold when n = 58.

Remark 4.2 Since the results of Theorem 4.2 already include the main results of [8]
and [5], our results actually also provide the simplified proofs of the main results of
[8] and [5].
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